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Steady-State Performance of a Rotating Miniature Heat Pipe
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The operating principle of a rotating miniature heat pipe (RMHP) with a grooved inner wall surface
is addressed. A mathematical model of the hydrodynamic performance of RMHPs is developed. A simple
correlation for the friction coef� cient of axial liquid � ow including a vapor drag effect is proposed, based
on the numerical analysis of two-dimensional laminar liquid � ow in a groove. With the present model,
the maximum performance and optimum liquid � ll amount of RMHPs are predicted under various
operating conditions. In� uences of operating temperature, rotational speed, and liquid– vapor interfacial
shear stress on the maximum performance and optimum liquid � ll amount are discussed. Pressure drops
of the axial liquid � ow and vapor � ow are demonstrated.

Nomenclature
A = cross-sectional area, m2

a1, a2 = constants
Dh = hydraulic diameter, m
Fr = Froude number, 2sb/g
f = friction coef� cient
g = gravitational acceleration, ms 2

H l = liquid depth, m
h fg = latent heat of evaporation, J kg 1

L = length, m
M = Mach number, w̄v,a/ R T0 g v

Mt = total � uid mass, kg
N = rotational speed, rpm
Ng = number of grooves
Pv = wetted perimeter of vapor, m
p = pressure, N/m2

Q = heat rate, W
Qa = total heat input, W
qc = heat � ux of condensation, W m 2

R = inner radius of a heat pipe, m
Re = vapor axial Reynolds number, vDh,vw̄v/ v

Rel = liquid Reynolds number, lDh,lw̄ l/ l

Rer = vapor radial Reynolds number, vDh,vv̄v,w/ v

Rg = individual gas constant, J kg 1 K 1

Rm = radius of curvature of the meniscus, m
sa, sb, st = radii, m
Tv = vapor temperature, C
u = velocity in the x direction, ms 1

v = radial velocity, ms 1

w = axial velocity, ms 1

w̄ = mean axial velocity, ms 1

x = coordinates, m
x1 = half-side length of polygonal wall, m
y = coordinates, m
z = axial coordinate, m

= momentum � ux coef� cient
= half-angle of the groove
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0 = ratio of speci� c heats
p = relative pressure, p pl0, N /m2

= liquid � lm thickness, m
= meniscus contact angle

1 = liquid– wall interface
2 = liquid– vapor interface

= dynamic viscosity, Ns/m2

= mass density, kg m 3

= surface tension, N/m
v = interfacial shear stress, N/m2

*v = dimensionless interfacial shear stress, v/ 2w̄l l

= angular velocity, rad 1

Subscripts
a = adiabatic
c = condenser
e = evaporator
l = liquid
max = maximum
op = optimum
t = total
v = vapor
w = wall
0 = evaporator end cap

Introduction

S INCE the concept of rotating heat pipes was proposed by
Gray,1 rotating heat pipes have found many applications in

rotating components. One of the most successful applications
for rotating heat pipes is in cooling electric motors and gen-
erators, allowing modern electric machines to have large load-
ings with a compact size. Marto2 and Faghri3 have given the
overview of rotating heat pipe research and development. Most
of the available research has taken motor cooling as a typical
application background, where inner diameters of rotating heat
pipes are larger than 10 mm, and the Froude number of rotat-
ing heat pipes is much larger than 1, that is, Fr = 2R/g >>
1. Little investigation has been reported, relating to the case
of small diameter rotating heat pipes; although the correspond-
ing application, such as drill bit cooling with a rotating heat
pipe, has been proposed by Gray.4

To start the investigation of a rotating heat pipe having a
small i.d. and operating horizontally, it is suggested that a se-
ries of triangular grooves be made along the heat pipe inner
wall to use the resultant capillary pumping force as well as the
centrifugal force to return the condensate to the evaporator
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Fig. 1 Performance of an axially rotating miniature heat pipe
with a polygonal inner wall with triangular grooves.

Fig. 2 Cross-sectional view of the rotating miniature heat pipe.

(Fig. 1). If the distance between a polygonal wall surface and
the heat pipe centerline sb is small and the rotational speed is
not high, or Fr < 1, the capillary pumping force will become
dominant in maintaining a steady two-phase � ow circulation
in the rotating heat pipe. In this case, the inner wall grooves
serve not only as enhanced heat transfer surfaces, but, more
signi� cantly, as return liquid channels capable of pumping the
condensate back to the evaporator. If the rotational speed is
suf� ciently high, i.e., Fr >> 1, the condensate return relies on
the centrifugal force, and the grooves mainly improve the con-
densation heat transfer. We refer to this type of heat pipe as
rotating miniature heat pipe (RMHP).

Since Cotter5 introduced the concept of micro heat pipes for
the cooling of electronic devices, numerous analytical and ex-
perimental investigations of micro and miniature heat pipes
have been conducted. Detailed literature reviews related to mi-
cro and miniature heat pipes have been given by Cao and
Faghri.6 The rotating miniature heat pipe is expected to have
many similar features of miniature heat pipes and rotating heat
pipes with a relatively large i.d.. The object of the present
study is to develop a mathematical model for prediction of the
maximum performance and optimum liquid � ll amount of
RMHP. For modeling, a quasi-one-dimensional momentum
equation of axial liquid � ow and a simple formula for the
friction coef� cient of the axial liquid � ow in triangular grooves
are developed.

Operating Principles
As shown in Fig. 1, an axially rotating miniature heat pipe

is horizontally oriented. It is composed of a series of triangular
grooves machined along the inner wall to provide condensate
return paths or liquid channels. In RMHPs, the thermal energy
transport relies on the evaporation and condensation of a small
amount of working � uid. The vaporization and condensation
process causes the liquid– vapor interface in the liquid grooves
to change continuously along the length. The change in the
liquid– vapor interface has a twofold effect. A change in radius
of curvature of the liquid– vapor interface causes a capillary
pressure difference between the condenser and evaporator,
which promotes the � ow of condensate back to the evaporator.
In addition, a varying liquid depth allows the centrifugal ac-
celeration to produce a hydrostatic pressure change along the
groove and, consequently, to pump the condensate back to the
evaporator. In the condenser, the vapor condensates on the
polygonal wall surface and forms a liquid � lm. The condensate
of � lm � ows circumferentially into the groove by the aid of
the centrifugal force. Close to the evaporator end cap, the liq-

uid meniscus is depressed in the groove corner, and its cross-
sectional area and radius of curvature of the liquid– vapor in-
terface are very small if the heat input is suf� ciently high. The
polygonal wall surface is dry in the evaporator. The counter-
� owing vapor exerts a shear force at the liquid free surface
and decreases the maximum performance of the heat pipe. The
maximum performance is believed to be reached if the capil-
lary and centrifugal pumping forces are not suf� ciently large
to ensure a steady two-phase � ow circulation in the heat pipe.
Conceivably, to distribute most liquid in all grooves equally,
the centrifugal force should be at least greater than the gravi-
tational force, or the Froude number, de� ned as

2Fr = s /g (1)b

is greater than 1.

Steady-State Modeling
The � uid � ow in a horizontally oriented RMHP is charac-

terized by a circumferential liquid � ow on the condensation
surface of the polygonal wall surface, an axial liquid � ow in
the groove, and a countercurrent vapor � ow with varied mass
rate caused from evaporation and condensation. These � ows
are assumed to be one dimensional. Figure 2 shows a cross-
sectional view of the heat pipe and liquid distribution in the
condenser.

To obtain a high internal heat transfer coef� cient and to
prevent � ooding of the countercurrent � ow during operation
of the RMHP, the liquid � ll is controlled to ensure that no
excess liquid blocks in the condenser end. In the modeling of
hydrodynamic performance, the following assumptions are
made:

1) The vapor and liquid � ows are incompressible.
2) The liquid � ow is laminar.
3) The radial heat � ux applied at the evaporator is linearly

decreased with the axial distance z, and the radial heat � ux
removed from the condenser is uniform.

4) The vapor and liquid are in the saturated state.
5) The effect of gravitational force on the � ow is negligible.
6) In� uences of the Coriolis force and surface tension on

the circumferential condensate � lm � ow are negligibly small.
7) The contact angle of the meniscus is constant.
8) A thin liquid � lm amount in the triangular groove region

of (Lw L l) is neglected.
9) The effect of vapor drag on the circumferential liquid

� lm � ow can be neglected.
At any axial location, the mass conservation over a cross

section of the RMHP states

w̄ A = N w̄ A (2)v b v g l l l
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where the cross-sectional areas of axial liquid � ow and vapor
� ow are (see Fig. 2)

2cos ( )2A = R cos( )sin( )l m
tan

(3)
2

sb2A = N s tan( /N ) L sin s N Av g b g w t g l
cos( /N )g

(4)

The distance between the heat pipe centerline and meniscus
center point sa (see Fig. 2) is given by

cos( )
s = s R 1 sin( ) (5)a t m

tan

Variations of Av and Al, with the length, depend on the var-
iation of the liquid– vapor interfacial Rm, which is related to
the pressure difference between the liquid and vapor by the
Laplace– Young equation:

p = p ( /R ) (6)l v m

Because there is no excess liquid accumulated in the end of
condenser, Mt is calculated by

M = A dz N A dz 2N L d x (7)t v v g l l g l c

L L xt t 1

where L t = Le La Lc.

Liquid Flow in a Groove

Since the effect of gravitational force on the � ow is ne-
glected, the liquid � ow in the groove is independent of cir-
cumferential position. A momentum equation for the liquid
� ow in a stationary groove has been established3 and, in the
case of horizontal operation, can be expressed as

2 2dp w wl l l
= (8)l 2 2dz x y

In the present case of RMHP, a momentum equation can be
formulated by introducing a centrifugal force term into Eq. (8)
for the stationary heat pipe. The effect of centrifugal force is
re� ected by a varying H l along the groove. A net driving pres-
sure generated by the centrifugal force, acting on a control
volume of the liquid � ow in a groove, can be expressed as

l
2sa dH l, where Hl is shown in Fig. 2. The correspond-

ing pressure gradient in the z direction is l
2sa dH l/d z, or

l
2sa dsa/dz. Adding this term of centrifugal force into Eq.

(8), we obtain the momentum equation for the axial liquid � ow
in the rotating miniature heat pipe (nontapered), as follows:

2 2dp ds w wl a l l2s = (9)l a l 2 2dz dz x y

The term on the right-hand side (RHS) expresses the liquid
viscous drag. If F refers to the left-hand part of Eq. (9), then
Eq. (9) can be rewritten as

2 2w wl lF = (10)l 2 2x y

As shown in Fig. 2, the liquid in the groove touches both
walls, 1, and interacts with the vapor � ow at the liquid– vapor

interface, 2. The no-slip condition and relation for the quality
of tangential shear stress on these surfaces are

wl
w = 0, = (11)l l v1 n

2

where the liquid– vapor v is given by

2= ( f /2) w̄ (12)v v v v

and n is the normal vector on the free surface of the liquid
meniscus. To simulate the heating condition of a drill bit, a
linear change in heat rate per unit axial length along the evap-
orator is assumed:

dQ(z) 2Q za
= 1 (13)

dz L Le e

In the condenser, the change is constant

dQ(z) Qa
= (14)

dz Lc

Related to the changes in heat load, the energy equation can
be cast into a form re� ecting the change in the axial mass � ow
rate of liquid:

1 2Q za
1 0 z Le

Nh L Lfg e e

d(w̄ A )l l l
= (15)0 L < z L Le e adz

1 Qa L L < z Le a t
Nh Lfg c

The axial liquid velocity at the evaporator end cap is zero:

w̄ = 0 (16)l z=0

The vapor and liquid pressures at the evaporator end cap
are

p = p , p = p ( /R ) (17)v z=0 v0 l z=0 v0 m0

Given a value of F, Eq. (10), along with Eq. (11), describe
a two-dimensional boundary value problem. To simplify the
liquid momentum equation, a liquid friction coef� cient fl is
de� ned by the following equation:

2 2 2w w 2 w̄l l l l
= f (18)l l2 2x y Dh,l

which is subject to boundary condition (11), where w̄l and Dh,l

are de� ned as

1
w̄ = w (x, y) dx dy (19)l l

Al Al

4Al
D = (20)h,l

2L l

and where

L = R cos( )/sin (21)l m
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Therefore, Eq. (10) can be replaced by a one-dimensional
momentum equation with a liquid friction term on the RHS:

22 w̄l l
F = f (22)l Dh,l

For a prescribed heat pipe geometry, a practical formula re-
lating fl to Rel and a dimensionless liquid– vapor is sup-*v
posed to have the following form:

a1f = a * (23)l 2 v
Rel

where Rel and are de� ned as*v

w̄ Dl l h,l
Re = (24)l

l

v
* = (25)v 2w̄l l

The coef� cients a1 and a2 in Eq. (23) are determined through
regression of different data groups of fl, Rel, and , which*v
result from solutions of the two-dimensional boundary-value
problem, given by Eqs. (10) and (11), and Eqs. (19)– (22),
(24), and (25), for various values of F and Al.

Condensate Film

The coordinate system for condensate � lm � ow is shown in
Fig. 2. Under the assumption of negligible Coriolis force, the
circumferential � lm � ow is symmetrical about the rotational
coordinate of y. Assuming that the condensate � lm thickness
is very small compared to sb, the momentum equations in the
y and x directions for the condensate � lm � ow and boundary
conditions are similar to those used for rotating heat pipes with
a large i.d.7

pl 2(s y) = 0 (26)l b
y

2p ul l2x = 0 (27)l l 2x y

subject to

y = 0, u = 0 (28)l

ul
y = , = 0, p = p (29)l v

y

d
x = 0, = 0 (30)

d x

To close the solution of Eqs. (26) and (27), a boundary con-
dition at x = x1 is required. On the assumption that the liquid
� ow in the groove has no in� uence on the condensate � lm
� ow on the polygonal wall surface, this boundary condition is
approximately written as

d
x = x , = 0 (31)1

d x

The energy equation can be expressed as

q xc
= u dy (32)l l

h fg 0

where qc is given by

q = Q /2NL x (33)c a c 1

Through mathematical treatments of the partial differential
equations, (26) and (27), along with conditions (28) and (29),
an ordinary differential equation (ODE) subject to condition
(31) is reduced as follows:

d 3 ql c(s ) = x 1 (34)b 2 2 3d x hl fg

Boundary condition (30) is naturally satis� ed.

Vapor Flow

The conservation of momentum equation for one-dimensional
vapor � ow is

2dp d 2 w̄v v v2( w̄ ) = f (35)v v v v
dz dz Dh,v

where v, fv, and Dh,v are the momentum � ux coef� cient, the
friction coef� cient, and the hydraulic diameter of the vapor
channel, respectively. Dh,v is de� ned as

D = 4A /P (36)h,v v v

where Pv is approximately given by

P = 2N [ x L L R [( /2) ]] (37)v g 1 w l m

The friction coef� cient and momentum � ux coef� cient in
the evaporator and adiabatic sections are calculated using the
approximation of Khrustalev and Faghri,8 based on the results
given by Bankston and Smith9:

2f = (16 0.46Re 0.017Re )/Re, = 1.33 0.005Rev r r v r

(38)

where the radial Reynolds number and axial Reynolds number
of vapor are de� ned, respectively, as

v̄ Dv,w h,v vRe = (39)r
v

w̄ Dv h,v v
Re = (40)

v

Equation (38) is applicable in the range of radial Reynolds
numbers of 0 Rer < 20. In the condenser section10,11

f = 16[1.2337 0.2337 exp( 0.0363Re )][exp(1.2M )]/Rev r

= 1.33 (41)v

Numerical Simulation
The � rst step is to determine the coef� cients a1 and a2 in

Eq. (23). The two-dimensional boundary-value problem, given
by Eqs. (10) and (11), is solved for various values of F and a
cross-sectional area of Al using a � nite element analysis meth-
odology. In the analysis, triangular three-node elements are
used, and meshes are generated on different cross-sectional
areas of Al. The side length of L l, as shown in Fig. 2, is varied
from 0.2 to 0.65 mm. The program output gives distributions
of axial liquid velocity w l(x, y). The mean axial liquid velocity
is then calculated using Eq. (19). From Eqs. (20)– (22), (24),
and (25), the corresponding values of fl, Rel, and are further*v
obtained, and they are used for regression of the coef� cients
a1 and a2, based on Eq. (23). As a result, we obtain the coef-
� cients a1 = 13.163 and a2 = 0.6211. Intervals with 90% con-
� dence are 13.123– 3.203 for a1 and 0.5938– 0.6484 for
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Fig. 4 Maximum performances of the rotating miniature heat
pipe with and without shear stress at the liquid– vapor interface
vs operating temperature.

Fig. 3 In� uences of the rotational speed and operating temper-
ature on the maximum performance of the rotating miniature heat
pipe.

a2. The correlation for the liquid friction coef� cient for =
20 deg and = 30 deg is therefore expressed as follows:

13.163
f = 0.6211 * (42)l vRel

Errors of the prediction from Eq. (42) are between 2.8 and
1.3% of the result from the � nite element analysis in the fol-
lowing ranges of parameter variation: Hl = 0.2– 0.65 mm, Qa

= 0.031– 24.0 W, Tv = 110 C, and v = 7.7 10 5– 0.055 N/
m2. The next step is to solve ODEs (15), (22), and (35) in the
z direction, as well as Eq. (34) in the x direction. The solution
of Eq. (15), subject to Eq. (16), gives

2Q z za
1 0 z Le

Nh L 2Lfg e e

Qa
w̄ A = L < z L L (43)l l l e e a

Nh fg

Q L za t
L L < z Le a t

Nh Lfg c

Differentiating Eq. (6), and rearranging Eqs. (22) and (35),
gives

2dR R dp dpm m l v
= (44)

dz dz dz

2 2 2 2 2 2 2 2dp 2N A w̄ d N A w̄v l l l v l l l
= f (45)v 2 2dz D A dz Av h,v v v v

2dp s s dR 2 w̄l t a m l l2= s f (46)l a l
dz R dz Dm h,l

It is noted that since Av and v change only slightly with
length, the second term in Eq. (35), re� ecting the dynamic
change of the vapor � ow, is approximately replaced by the
second term on the RHS of Eq. (45). The boundary conditions
corresponding to Eqs. (44)– (46), at z = 0, are

R = R , p = p , p = p ( /R ) (47)m m0 v v0 l v0 m0

where Rm0 is related to the liquid � ll amount at a given heat
input. The system of ODEs (44)– (46) are solved numerically
using the Runge– Kutta procedure. The controlled relative er-
ror is less than 10 5 for each of the variables. In solution, Eqs.
(3)– (5), (20), (21), (24), (25), (36)– (41), (42), and (43) are
also used. As a result, distributions of Rm, pv, and pl along the
heat pipe can be obtained. The solution of Eq. (34), using the
Runge– Kutta procedure, gives a liquid � lm thickness distri-
bution in the x direction. The axial distributions of Al and Av

are obtained using Eqs. (3) and (4). The liquid � ll amount is
then predicted by Eq. (7). The optimum liquid � ll amount is
such a value with which the maximum performance limitation
is reached. At the maximum performance, the liquid at the
condenser end cap (z = L t) satis� es L l = Lw, and Rm0 has the
smallest value possible, provided that Eqs. (44)– (46) can still
be solved successfully. Close to the maximum performance,
the variation of the heat rate with a decrease of Rm0 is very
small. The similar feature in a miniature heat pipe has been
noted by Khrustalev and Faghri.8 Therefore, the maximum per-
formance can be found in the following way. Given a small
value of Rm0 and a value of Qa, Eqs. (44)– (46) are solved, and
a value of L l at z = L t is obtained from Eq. (21). If L l < Lw,
the value of the total heat rate is increased by Qa. Repeat this
procedure until the condition of = Lw is satis� ed. TheL l z=Lt

heat rate corresponding to this case is the maximum perfor-
mance Qmax.

Results and Discussion
For the numerical simulation, water is chosen as the working

� uid. The heat pipe wall material is copper. The operating
temperature, referring to the vapor temperature at the evapo-
rator end cap, ranges from 80 to 140 C. The minimum is
33 for copper– water.8 Dimensions of the polygonal heat pipe
are as follows: sb = 1.3 mm, st = 2.0 mm, = 20 deg, Lw =
0.6724 mm, x1 = 0.485 mm, Le = 50 mm, La = 40 mm, and
Lc = 50 mm.

Figure 3 shows the predicted maximum performance as a
function of the rotational speed at three different operating
temperatures, 140, 110, and 90 C. The maximum performance
increases with an increase of rotational speed and operating
temperature. At Tv = 110 C, Qmax can be increased by 14.5%,
if the rotational speed is increased from 1200 to 2400 rpm. At
N = 1200 rpm (Fr = 2.63), Qmax is enhanced by 21% if the
operating temperature rises from 90 to 110 C. The in� uence
of the liquid– vapor interfacial shear stress on Qmax is shown
in Fig. 4. The maximum performance of RMHP, including the
vapor drag effect, is signi� cantly lower than that neglecting
this effect. The in� uence of the interfacial shear stress is more
evident at low operating temperatures than at high operating
temperatures. At Tv = 80 C, the Qmax with interfacial shear
stress is 30% higher than that of no interfacial shear stress
effect. Figure 5 shows variations of the relative pressures of pl

pl0 and pv pl0 with the heat pipe length. The pressure drop
is much higher in the liquid than in the vapor at higher heat
rates, Q > 10.0 W. As the heat rate approaches the maximum
performance, the pressure drop of the axial liquid � ow over
the heat pipe length increases signi� cantly. Most of the pres-
sure drop appears in the region close to the evaporator end
cap, 0 < z < 0.2 m, since Al becomes signi� cantly small in this
region. The pressure drop in the vapor increases slightly as Qa
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Fig. 5 Variations of the relative pressures of liquid and vapor
along the length at different heat rates for a rotating miniature
heat pipe.

Fig. 6 Optimum liquid � ll amount as a function of operating
temperature for a rotating miniature heat pipe.

is close to the maximum performance (Qmax = 12.8 W). The
optimum liquid � ll amounts Mt,op, as a function of the operating
temperature at N = 2400 and 1200 rpm, are presented in Fig.
6. The in� uence of the rotational speed on the optimum liquid
� ll amount is very small. The optimum liquid � ll amount in-
creases only slightly with an increase of operating temperature.
It is a bene� cial feature for the RMHP design that the optimum
liquid � ll amount of RMHP need not be changed if the oper-
ating temperature and rotational speed are varied.

Compared to the liquid amount in the grooves, the � lm liq-
uid amount is a small fraction of Mt,op. At Tv = 110 C, N =
1200 rpm and Qmax = 12.8 W, for instance, the � lm liquid
amount is 4.6% of Mt,op, whereas that in the grooves is 94.2%.
As the rotational speed increases to N = 2400 rpm at Tv =
110 C and Qmax = 14.65 W, the � lm liquid amount is only
3.0% of Mt,op. The condensate � lm thickness is much smaller
than sb. For example, is only 1.1% of sb at Tv = 140 C, N =
800 rpm, and Qmax = 14.5 W. It should be noted that under the
present operating conditions, Rer is smaller than 7.0.

It should be noted that the predicted maximum performance
of RMHP under the condition of centrifugal force � eld is ac-

tually a capillary limitation. In numerical simulation, this lim-
itation corresponds to the case where the solution of ODEs
(44)– (46) begins to change dramatically with a slight incre-
ment of heat rate. The similar characteristic of the capillary
limitation has been addressed in the analysis of performance
limitation in a stationary micro heat pipe.8

To enhance the maximum performance of the modeled
RMHP, the groove number can be increased to a certain extent,
since the increase in the groove number can decrease the axial
liquid � ow resistance. The groove number also has an in� u-
ence on the heat pipe internal heat transfer coef� cient.

Conclusions
The hydrodynamic performance of a rotating miniature heat

pipe is numerically simulated, based on the present mathe-
matical model, and the results can be summarized as follows:

1) The maximum RMHP performance increases with an in-
crease of the rotational speed and operating temperature.

2) The friction coef� cient of liquid � ow in a groove can be
correlated to the liquid Reynolds number and a dimensionless
liquid– vapor interfacial shear stress by a simple formula,
based on the results of numerical analysis.

3) The pressure drop of axial liquid � ow over the heat pipe
length increases signi� cantly as the heat rate approaches the
maximum performance. The liquid pressure drop in the region
close to the evaporator end cap is much higher than that in the
other regions of the heat pipe.

4) In� uences of the operating temperature and rotational
speed on the optimum liquid � ll amount are very small.

References
1Gray, V. H., ‘‘The Rotational Heat Pipe— A Wickless Hollow

Shaft for Transferring High Heat Fluxes,’’ American Society of Me-
chanical Engineers, Paper 69-HT-19, 1969.

2Marto, P. J., ‘‘Rotating Heat Pipes,’’ XIV. ICHTM Symposium, Heat
and Mass Transfer in Rotating Machinery (Dubrovnik), 1982, pp.
609– 632.

3Faghri, A., ‘‘Heat Pipe Science and Technology,’’ Taylor and Fran-
cis, Washington, DC, 1995.

4Gray, V. H., ‘‘Method and Apparatus for Heat Transfer in Rotating
Bodies,’’ U.S. Patent, No. 3,842,596, 1974.

5Cotter, T. P., ‘‘Principles and Prospects for Micro Heat Pipes,’’
Proceedings of the 5th International Heat Pipe Conference (Tsukuba,
Japan), 1984, pp. 328– 335.

6Cao, Y., and Faghri, A., ‘‘Micro/Miniature Heat Pipes and Oper-
ating Limitations,’’ Enhanced Heat Transfer, Vol. 1, No. 3, 1994, pp.
265– 274.

7Vasiliev, L. L., and Khrolenok, V. V., ‘‘Heat Transfer in Rotating
Heat Pipes,’’ Proceedings of the 7th International Heat Pipe Confer-
ence (Minsk), 1990, pp. 285– 293.

8Khrustalev, D., and Faghri, A., ‘‘Thermal Analysis of a Micro Heat
Pipe,’’ Journal of Heat Transfer, Vol. 116, No. 1, 1994, pp. 189– 198.

9Bankston, C. A., and Smith, H. I., ‘‘Vapor Flow in Cylindrical
Heat Pipes,’’ Journal of Heat Transfer, Vol. 95, 1973, pp. 371– 376.

10Bowman, W. J., and Hitchcock, J. E., ‘‘Transient, Compressible
Heat Pipe Vapor Dynamics,’’ Proceedings of the ASME National Heat
Transfer Conference (Houston, TX), Vol. 1, 1988, pp. 329– 338.

11Jang, J. H., Faghri, A., and Chang, W. S., ‘‘Analysis of the Tran-
sient Compressible Vapor Flow in Heat Pipes,’’ International Journal
of Heat and Mass Transfer, Vol. 34, No. 8, 1991, pp. 2029– 2037.


